63. Unique Paths II

problem

solution

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {

int n= obstacleGrid.size(), m= obstacleGrid[0].size();
vector<vector<int>> dp(n, vector<int>(m,0));

// 0 0 0 1 1 1
// 0 1 0 1 0 1
// 0 0 0 1 1 2
for(int i=0;i<n;++i){
for(int j =0;j<m;++j){
if(obstacleGrid[i][j]==1) continue;
// obstacleGrid[i][j] = 0
if(i==0 && j==0) dp[0][0] = 1;
else if(i==0) dp[i][j] = dp[i][j-1];
else if(j==0) dp[i][j] = dp[i-1][j];
else dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}

return dp.back().back();

}
};

option 2 - reduce dp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid.empty() || obstacleGrid[0].empty() || obstacleGrid[0][0] == 1) return 0;
int n = obstacleGrid.size(), m = obstacleGrid[0].size();
vector<int> dp(m,0);
dp[0] = 1;
for(int i=0;i<n;++i){
for(int j=0;j<m;++j){
if(obstacleGrid[i][j] == 1) dp[j] = 0;
else if(j>0) dp[j]+= dp[j-1];
}
}
return dp[m-1];
}
};

analysis

  • time complexity O(nm)
  • space complexity O(nm)