133. Clone Graph

problem

solution

option 1 - dfs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/*
// Definition for a Node.
class Node {
public:
int val;
vector<Node*> neighbors;
Node() {
val = 0;
neighbors = vector<Node*>();
}
Node(int _val) {
val = _val;
neighbors = vector<Node*>();
}
Node(int _val, vector<Node*> _neighbors) {
val = _val;
neighbors = _neighbors;
}
};
*/

class Solution {
public:
unordered_map<Node* , Node*> visited;
Node* cloneGraph(Node* node) {
if(!node ) return node;
// 避免陷入無限循環
if(visited.find(node)!=visited.end()) return visited[node];
Node *clone = new Node(node->val);
visited[node] = clone;
for(Node* n:node->neighbors){
clone->neighbors.push_back(cloneGraph(n));
}
return visited[node];

}
};

option 2 - bfs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/*
// Definition for a Node.
class Node {
public:
int val;
vector<Node*> neighbors;
Node() {
val = 0;
neighbors = vector<Node*>();
}
Node(int _val) {
val = _val;
neighbors = vector<Node*>();
}
Node(int _val, vector<Node*> _neighbors) {
val = _val;
neighbors = _neighbors;
}
};
*/

class Solution {
private:
unordered_map<Node*, Node*> copies;
public:
Node* cloneGraph(Node* node) {
if (!node) {
return NULL;
}
Node* copy = new Node(node -> val, {});
copies[node] = copy;
queue<Node *>q;
q.push(node);
while(!q.empty()){
Node *cur = q.front();
q.pop();
for(Node *neighbor:cur->neighbors){
if(copies.find(neighbor)==copies.end()){
copies[neighbor] = new Node(neighbor->val, {});
q.push(neighbor);
}
copies[cur] -> neighbors.push_back(copies[neighbor]);
}
}
return copy;
}
};

analysis

  • time complexity O(n+m), n is the number of nodes and m is the number of edges
  • sparse complexity O(n)